MATH 2050 - Absolute value and some inequalities
(Reference: Bartle § 2.2)
Def: (Absolute value) Let $a \in \mathbb{R}$.

$$
|a|:=\left\{\begin{array}{cl}
a & \text { if } a>0 \\
0 & \text { if } a=0 \\
-a & \text { if } a<0
\end{array}\right.
$$

Note: $|a| \geqslant 0 \quad \forall a \in \mathbb{R}$

Prop: (a) $|a b|=|a| \cdot|b|$
(b) $|a|^{2}=a^{2}$
*(c) Let $c \geqslant 0$. Then $|a| \leqslant c \Leftrightarrow-c \leqslant a \leqslant c$
(d) $-|a| \leq a \leq|a|$

Proof: (a) We exhaust all possible cases from Trichotomy (02).
Case 1: Either a or b is 0 .
Then, $a b=0 \Rightarrow|a b|=0$.
Also. if $a=0$, then $|a|=0 \Rightarrow|a| \cdot|b|=0$.
Same for $b=0$. So. $|a b|=|a||b|=0$.
Case 2: $a>0$ and $b<0$.
Then, by Prop. last time. $a b<0 \Rightarrow|a b|=-a b$ 11 same
Also, $a>0 \Rightarrow|a|=a \quad|b|=-b,|a| \cdot|b|=a \cdot(-b)=-a b$ Exc check this!

Case 3: $a>0$ and $b>0$
Case 4: $a<0$ and $b<0$) left as exercise
Case 5: $a<0$ and $b>0$ (same as case 2)
(b) Take $b=a$ in (a).

$$
\begin{aligned}
& a^{2}=\left|a^{2}\right|=|a b|=|a||b|=|a| \cdot|a|=|a|^{2} \\
& L \quad a^{2} \geqslant 0 \quad \forall a \in \mathbb{R} .
\end{aligned}
$$

(c) Exhaust all cases of a by trichoting (Exercise)
(d) Follows from (c) by taking $C=|a| \geqslant 0$.

Some Useful Inequalities
(1) $A M-G M$ inequality: $\sqrt{\underline{a b}} \leqslant \frac{1}{2}(a+b) \quad \forall a, b \geqslant 0$
(2) Triangle inequality: $\quad|a+b| \leqslant|a|+|b| \quad \forall a, b \in \mathbb{R}$
(3) Bernoulli's inequality: $\underset{>0}{(1+x)^{n}} \geqslant 1+n \cdot x \quad \forall x>-1 . \forall n \in \mathbb{N}$

Proof: (1) Let $a, b \geqslant 0$, then \sqrt{a}, \sqrt{b} exist (Assume this). By previous lemma.

$$
\begin{aligned}
0 \leqslant(\sqrt{a}-\sqrt{b})^{2} & =(\sqrt{a})^{2}-2 \sqrt{a} \sqrt{b}+(\sqrt{b})^{2} \\
& =a-2 \sqrt{a} \sqrt{b}+b
\end{aligned}
$$

Rearranging gives the desired inequality.
(2) By (d) above, we have

$$
\begin{aligned}
-|a| & \leqslant a
\end{aligned} \leqslant|a| \quad-|b| \leq b \leq|b| \leqslant \xrightarrow{\text { add }}-(|a|+|b|) \leq a+b \leq|a|+|b|
$$

(3) Induction on n.
$n=1$: Trivial since $(1+x)^{n}=1+x=1+n \cdot x$. when $n=1$.
Assume $n=k$ is true, then for $n=k+1$.

$$
\begin{array}{r}
(1+x)^{k+1}=(1+x)(1+x)^{k} \\
\because: x>-1 \quad V_{0} \quad \mathbb{V} n=k
\end{array}
$$

$$
\begin{aligned}
& \geqslant(1+x)(1+k \cdot x) \quad\binom{\because n=k \text { is true }}{\text { and } x>-1} \\
& =1+(k+1) x+k \cdot x^{2} \quad \\
& \geqslant 1+(k+1) x \quad\left(\because k>0, x^{2} \geqslant 0\right)
\end{aligned}
$$

By M.I. . we are done. \qquad
Remark: Let $a, b \geqslant 0$. Then

$$
a \leqslant b \quad \Leftrightarrow \quad a^{2} \leqslant b^{2} \quad \Leftrightarrow \quad \sqrt{a} \leqslant \sqrt{b} .
$$

Prop: (Reversed Triangle Ineq.)

$$
||a|-|b|| \leqslant|a-b| \quad \forall a, b \in \mathbb{R} .
$$

Pf: Tutorial.

